p53-Induced Growth Arrest Is Regulated by the Mitochondrial SirT3 Deacetylase
نویسندگان
چکیده
A hallmark of p53 function is to regulate a transcriptional program in response to extracellular and intracellular stress that directs cell cycle arrest, apoptosis, and cellular senescence. Independent of the role of p53 in the nucleus, some of the anti-proliferative functions of p53 reside within the mitochondria [1]. p53 can arrest cell growth in response to mitochondrial p53 in an EJ bladder carcinoma cell environment that is naïve of p53 function until induced to express p53 [2]. TP53 can independently partition with endogenous nuclear and mitochondrial proteins consistent with the ability of p53 to enact senescence. In order to address the role of p53 in navigating cellular senescence through the mitochondria, we identified SirT3 to rescue EJ/p53 cells from induced p53-mediated growth arrest. Human SirT3 function appears coupled with p53 early during the initiation of p53 expression in the mitochondria by biochemical and cellular localization analysis. Our evidence suggests that SirT3 partially abrogates p53 activity to enact growth arrest and senescence. Additionally, we identified the chaperone protein BAG-2 in averting SirT3 targeting of p53 -mediated senescence. These studies identify a complex relationship between p53, SirT3, and chaperoning factor BAG-2 that may link the salvaging and quality assurance of the p53 protein for control of cellular fate independent of transcriptional activity.
منابع مشابه
Sirt3 protects in vitro-fertilized mouse preimplantation embryos against oxidative stress-induced p53-mediated developmental arrest.
Sirtuins are a phylogenetically conserved NAD+-dependent protein deacetylase/ADP-ribosyltransferase family implicated in diverse biological processes. Several family members localize to mitochondria, the function of which is thought to determine the developmental potential of preimplantation embryos. We have therefore characterized the role of sirtuins in mouse preimplantation development under...
متن کاملSIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer's disease
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Despite decades of study, effective treatments for AD are lacking. Mitochondrial dysfunction has been closely linked to the pathogenesis of AD, but the relationship between mitochondrial pathology and neuronal damage is poorly understood. Sirtuins (SIRT, silent mating type information regulation 2 homolog in yeast) are NA...
متن کاملMinnelide/Triptolide Impairs Mitochondrial Function by Regulating SIRT3 in P53-Dependent Manner in Non-Small Cell Lung Cancer
Minnelide/Triptolide (TL) has recently emerged as a potent anticancer drug in non-small cell lung cancer (NSCLC). However, the precise mechanism of its action remains ambiguous. In this study, we elucidated the molecular basis for TL-induced cell death in context to p53 status. Cell death was attributed to dysfunction of mitochondrial bioenergetics in p53-deficient cells, which was characterize...
متن کاملMetformin Reduces Hepatic Expression of SIRT3, the Mitochondrial Deacetylase Controlling Energy Metabolism
Metformin inhibits ATP production in mitochondria and this may be involved in the anti-hyperglycemic effects of the drug. Sirtuin 3 (SIRT3) is a mitochondrial protein deacetylase that regulates the function of the electron transport chain and maintains basal ATP yield. We hypothesized that metformin treatment could diminish mitochondrial ATP production through downregulation of SIRT3 expression...
متن کاملProteomic Investigations of Lysine Acetylation Identify Diverse Substrates of Mitochondrial Deacetylase Sirt3
Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important inform...
متن کامل